Who Cares About IPv6?

Sam Bowne
City College San Francisco

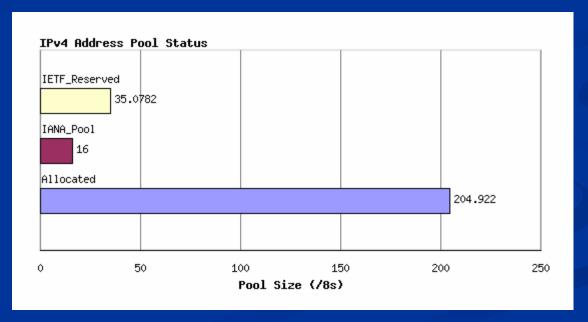
Part I

Who Cares?

IPv4 Addresses: 32 Bits

- IPv4 address: 192.168.1.10
 - Four bytes
- In Binary:

11000000 10101000 00000001 00001010

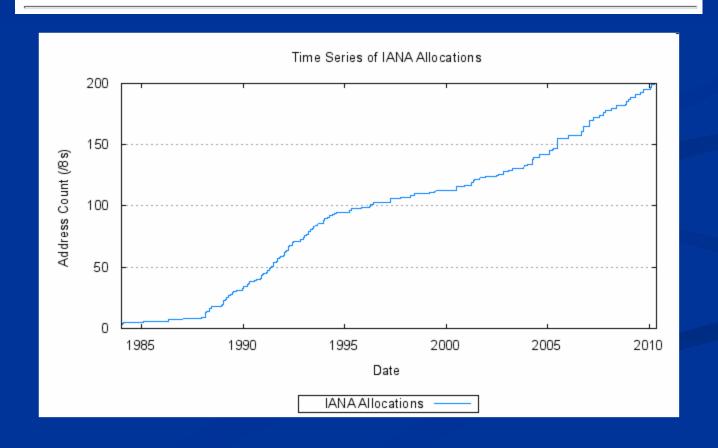

- 2^32 total addresses
 - 4 billion
- Are you kidding? There are 7 billion people, they each need iPads, cell phones, Google brain chip implants, etc...

IPv6 Addresses: 128 Bits

- IPv6 address
- 2001:05c0:1000:000b:0000:0000:0000:66fb
 - Omitting unnecessary zeroes;
- 2001:5c0:1000:b::66fb
 - Eight fields, each 16 bits long
 - 4 hexadecimal characters
- 2^128 total addresses
 - 256 billion billion billion billion
 - Enough for a while

IPv4 Exhaustion

- As of 6-30-2010, 16 "/8 address ranges" remain
 - Each /8 has 16.8 Million Addresses
 - 205 /8s already allocated
 - 35 Reserved for special uses



From link Defcon-talk 3

The End is Near

Projected IANA Unallocated Address Pool Exhaustion: 09-Sep-2011

Projected RIR Unallocated Address Pool Exhaustion: 07-Apr-2012

The End of the World

- No Reprieve
 - IANA will not re-purpose class D or E addresses for general use
- People who ask for IPv4 addresses after exhaustion will not get them
 - Hoarding, scalping, and simple direct sale of IPv4 addresses will begin soon

IPv4 & IPv6 Statistics

v4 Addresses 294,159,280

> v4 /8s Left 7% (18/256)

v6 Networks 6.3% (2,196/34,624)

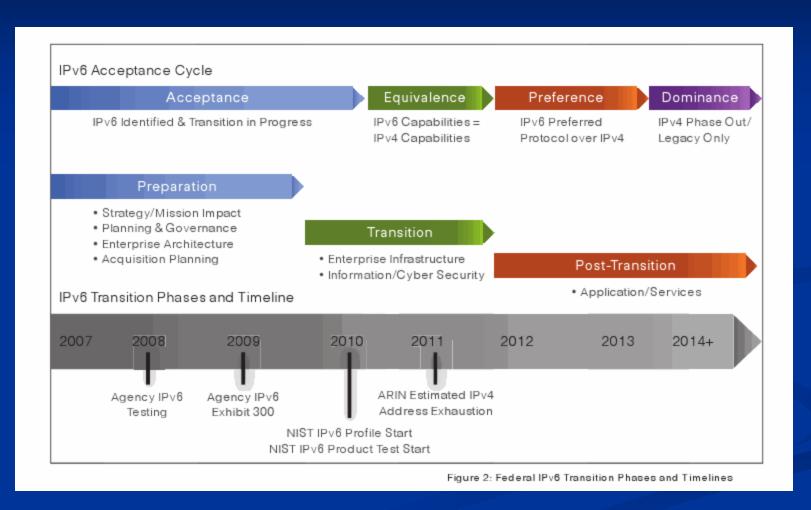
v6 Ready TLDs 80% (228/283)

> v6 Glue 2,406

v6 Domains 1,459,574

441

Days remaining



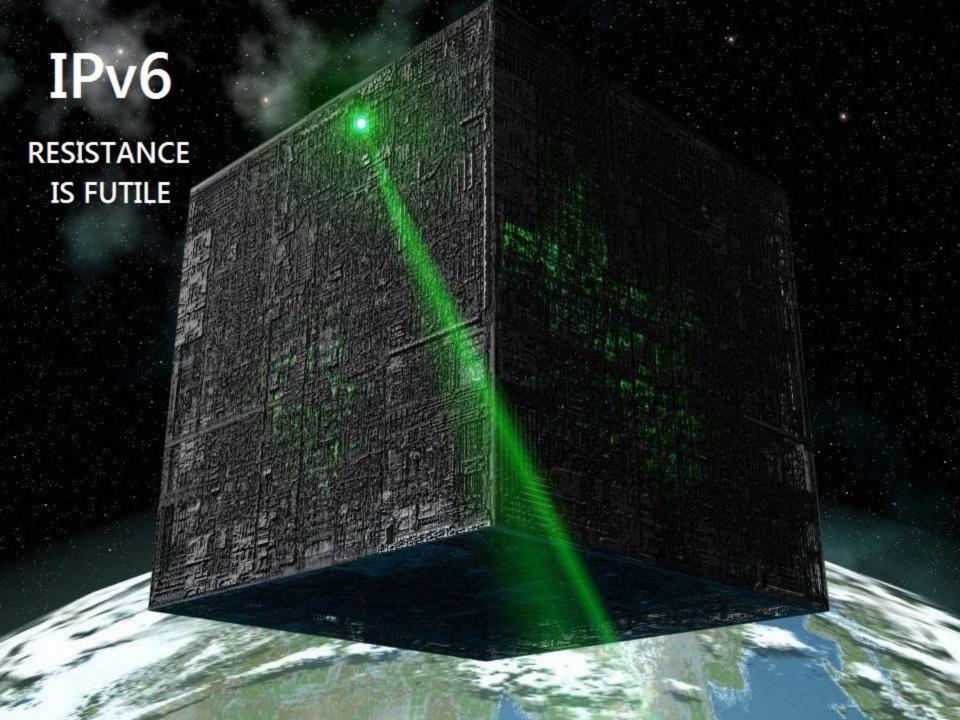
Projected DOD Timeline

2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	IPv4:			IPv4:						
Mandatory Standard			Mandatory Standard							
E2E Protocol			E2E Protocol			IPv6:				
							Manda	tory Sta	andard	
IPv6:			IPv6:			E2E Protocol				
Emerging Standard			Mandatory Standard							
E2E Protocol			E2E Protocol							
	IPv4				P. A.					
							IP	v6		

From link Defcon-talk 4

Federal IPv6 Transition Timeline

From Cisco (link Defcon-talk 2)


Summary

of Part I

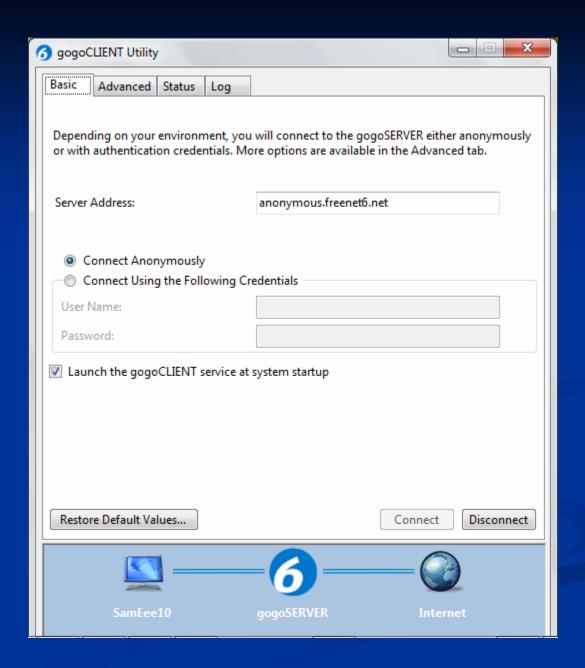
IPv4 is Full

Image from zinyaw.files.wordpress.com

Part II

What Now?

Methods of IPv6 Migration

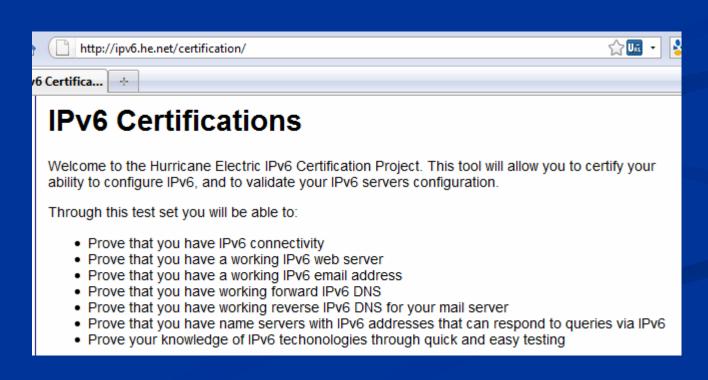

- Ignore IPv6: Stay on IPv4-only
- Gateways: Devices that convert IPv6 to IPv4
- Tunnel IPv6 over IPv4
- Dual-Stack: IPv4 and IPv6 together
- Nirvana: IPv6-only

IPv6 Tunnels

- Fast and easy to set up--best for n00bs
- Not the best for security or performance
- Free IPv4-to-IPv6 Tunnels
 - Gogo6.com
 - Sixxs.net
 - Tunnelbroker.com
 - Links Defcon-talk 5-7

GoGo6

Easiest


Demonstration

```
C:\Windows\System32>nslookup
Default Server: google-public-dns-a.google.com
Address:
         8.8.8.8
|> set a=AAAA
> ipv6.google.com
Server: google-public-dns-a.google.com
Address: [8.8.8.8
Non-authoritative answer:
Name:
         ipv6.l.google.com
Addresses: 2001:4860:8010::68
          2001:4860:8010::93
          2001:4860:8010::67
          2001:4860:8010::63
Aliases:
          ipv6.google.com
```

IPv6 Certifications

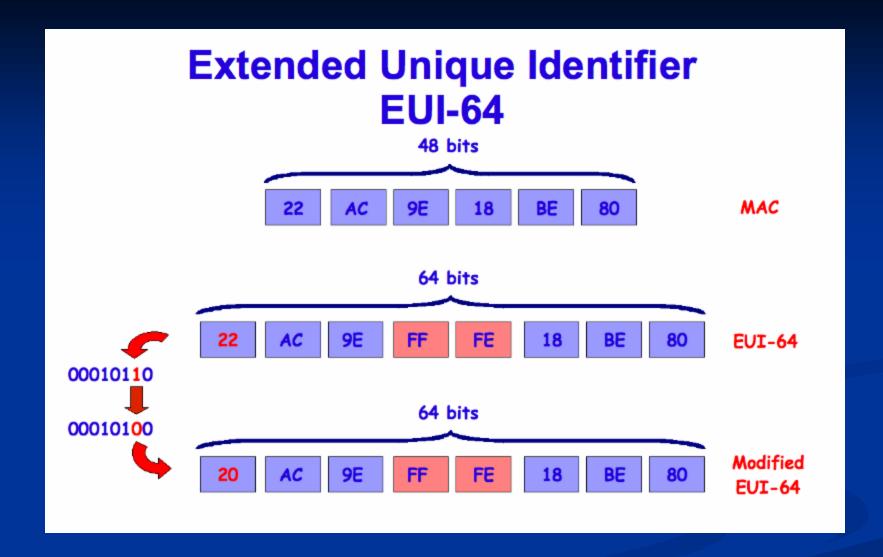
- Fun, realistic projects
- He.net
 - Link Defcon-talk 12

IPv6 Certifications

Certification Levels

- 1. Newbie: Knows basic facts about IPv6
- 2. Explorer: Has the ability to connect to servers via IPv6
- 3. Enthusiast: Has a Web server delivering pages over IPv6
- 4. Administrator: Has an SMTP server that accepts mail over IPv6
- 5. Professional: Has reverse DNS correctly configured for the IPv6 address of your SMTP server
- 6. Guru: Nameservers have AAAA records and can be queried over IPv6
- 7. Sage: Has IPv6 Glue

Scoreboard



Part III

Security Problems

Used by Ethernet

Privacy Risk

- Anyone who has your IP address also has your MAC address!
- There is a "Privacy Extensions" technique to avoid this, enabled by default in Vista and Windows 7

ICMPv6

- Required for all networks
- Cannot be blocked
- Replaces ARP
- "Neighbor Discovery" is trivial

THC-IPv6

- Hacker's Toolkit
- Runs fine onUbuntu, even inVMware onWindows 7
- Instructions: link Defcon-talk 8

```
Ubuntu Linux - VMware Workstation
                          Ubuntu Linux
student@student-desktop:~/Desktop/thc-ipv6-1.1$ sudo ./alive6 eth0
Alive: 2620:0000:1000:167a:0000:0000:0000:0
Alive: 2620:0000:1000:167a:901d:f654:0455:d
Alive: 2620:0000:1000:167a:020c:29ff:fele:0
Alive: 2620:0000:1000:167a:88eb:b24e:e0b6:1
Alive: 2620:0000:1000:167a:021d:e0ff:fe06:6
Alive: 2620:0000:1000:167a:e5f9:3b68:c07d:8
Alive: 2620:0000:1000:167a:0221:6aff:fe7f:1
Alive: 2620:0000:1000:167a:0219:e3ff:fed4:
Alive: 2620:0000:1000:167a:0223:76ff:fed4:b
Alive: 2620:0000:1000:167a:60f1:d84e:bc19:
Alive: 2620:0000:1000:167a:0226:bbff:fe02:3
Alive: 2620:0000:1000:167a:5158:187e:98cf:6
Alive: 2620:0000:1000:167a:0224:2cff:feaa:6
Alive: 2620:0000:1000:167a:0226:bbff:fe18:4
Alive: 2620:0000:1000:167a:9227:e4ff:fef6:6
Alive: 2620:0000:1000:167a:021b:63ff:fe09:1
Alive: 2620:0000:1000:167a:0226:bbff:fe17:2
Alive: 2620:0000:1000:167a:021b:63ff:fe01:2
Alive: 2620:0000:1000:167a:021e:c2ff:feb8:1
Alive: 2620:0000:1000:167a:0226:bbff:fe10:3
Alive: 2620:0000:1000:167a:021e:c2ff:febb:8
Alive: 2620:0000:1000:167a:0000:0000:0000:0
Alive: 2620:0000:1000:167a:021e:c2ff:fec0:5
Alive: 2620:0000:1000:167a:021f:5bff:fecc
Alive: 2620:0000:1000:167a:021f:5bff:fecb:
```

Other Risks

- Many security appliances are not ready for IPv6, so it often bypasses them
 - Torrents run over IPv6
 - Link Defcon-talk 9
 - Some VPN appliances are not ready, so IPv6 connections must bypass them
- Packet Amplification Attacks
 - Routing Header Zero
 - Ping-pong
 - Links Defcon-talk 10 and 11

Contact

- Sam Bowne
- Computer Networking and Information Technology, City College San Francisco
- Email: sbowne@ccsf.edu
- Twitter: @sambowne
- This whole talk and all the referenced links are on my Web site: samsclass.info
 - Click "Defcon Materials"