

ExploitSpotting: Locating Vulnerabilities Out Of
Vendor Patches Automatically

Jeongwook Oh
Sr. Security Researcher
WebSense Inc.

Defcon 18
August 1st, 2010
Las Vegas, USA

Why?
● I worked on a security product last 5 years.

● The IPS and vulnerability scanner needed signatures

● We needed technical details on the patches

● The information was not provided by the vendors

● In recent years, a program called MAPP appeared
from Microsoft, but many times it's not enough

● You have two options in this case:

● Use your own eye balls to compare disassemblies

● Use binary diffing tools

● Patch analysis using binary diffing tools is the only
healthy way to obtain some valuable information out
of the patches.

How?

● I'll show you whole process for a typical binary diffing

● You should grab an idea what binary diffing is

● The example shown next will show the typical example
of binary diffing process

● The patch(MS10-018) is for “CVE-2010-0806”
vulnerability.

Example: CVE-2010-0806 Patch
Description from CVE Web Page

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0806

Use-after-free vulnerability in the Peer Objects component (aka iepeers.dll) in
Microsoft Internet Explorer 6, 6 SP1, and 7 allows remote attackers to execute
arbitrary code via vectors involving access to an invalid pointer after the deletion of
an object, as exploited in the wild in March 2010, aka "Uninitialized Memory
Corruption Vulnerability."

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0806

CVE-2010-0806 Patch Analysis
Acquire Patches

● Download the patch by visiting patch page(MS10-018) and
following the OS and IE version link.

● For XP IE 7, I used following link from the main patch page to
download the patch file.(http://www.microsoft.com/downloads/details.aspx?FamilyID=167ed896-d383-4dc0-9183-

cd4cb73e17e7&displaylang=en)

CVE-2010-0806 Patch Analysis
Extract Patches

C:\> IE7-WindowsXP-KB980182-x86-ENU.exe /x:out

CVE-2010-0806 Patch Analysis
Acquire unpatched files

● You need to collect unpatched files from the operating
system that the patch is supposed to be installed.

● I used SortExecutables.exe from DarunGrim2 package to
consolidate the files. The files will be inside a directory with
version number string.

CVE-2010-0806 Patch Analysis
Load the binaries from DarunGrim2
● Launch DarunGrim2.exe and select "File New →

Diffing from IDA" from the menu

● You need to wait from few seconds to few minutes
depending on the binary size and disassembly complexity.

CVE-2010-0806 Patch Analysis
Binary Level Analysis

● Now you have the list of functions

● Find any eye catching functions

● Like following, the match rate(the last column value) 86%
and 88% is a strong indication that it has some minor code
change which can be a security patch.

CVE-2010-0806 Patch Analysis
Function Level Analysis

● If you click the function match row, you will get a
matching graphs.

● Color codes
● The white blocks are matched blocks

● The yellow blocks are modified blocks

● The red blocks are unmatched blocks

● Unmatched block means that the block is inserted or
removed.
● So in this case, the red block is in patched part which means that block has

been inserted in the patch.

CVE-2010-0806 Patch Analysis
Function Level Analysis

CVE-2010-0806 Patch Analysis
Function Level Analysis

● So we just follow the control flow from the red block
and we can see that esi is eventually set as return
value(eax).

● We can guess that the patch is about sanitizing return value
when some condition is not met or something.

The Problems with
Current Binary Diffing Tools

● Managing files are boring job.

● Downloading patches

● Storing old binaries/ Loading the files manually

● How do we know which function has security updates,
not feature updates?

● Just go through every modified functions?

– How about if the modified functions are too many?

The Solution = DarunGrim 3

● Bin Collector

● Binary Managing Functionality

● Automatic patch download and extraction

● Supports Microsoft Binaries

● Will support other major vendors soon

● Security Implication Score

● Shows you what functions have more security related
patches inside it.

● Web Interface

● User friendly

● By clicking through and you get the diffing results

Architecture Comparison
DarunGrim 2

Diffing
Engine

Database
(sqlite)

IDA

Windows
GUI

Architecture Comparison
DarunGrim 3

Diffing
Engine

Database
(sqlite)

IDA

Database
Python
Interface

Diffing
Engine
Python
Interface

Web ConsoleWindows
GUI

Bin Collector

Binary
Storage

Performing Diffing

● Interactive

● Non-Interactive

Performing Diffing: Interactive

● Using DarunGrim2.exe UI
● Just put the path for each binary and DarunGrim2.exe will do the rest of the job.

● DarunGrim2.exe + Two IDA sessions
● First launch DarunGrim2.exe

● Launch two IDA sessions

● First run DarunGrim2 plugin from the original binary

● Secondly run DarunGrim2 plugin from the patched binary

● DarunGrim2.exe will analyze the data that is collected through shared memory

● Using DarunGrim Web Console: a DarunGrim 3 Way
● User friendly user interface

● Includes "Bin Collector"/”Security Implication Score” support

Performing Diffing: Non-Interactive

● Using DarunGrim2C.exe command line tool
● Handy, Batch-able, Quick

● Using DarunGrim Python Interface: a DarunGrim 3
Way

● Handy, Batch-able, Quick, Really Scriptable

Diffing Engine
Python Interface

import DarunGrimEngine

DarunGrimEngine.DiffFile(unpatched_filename, patched_filename,
output_filename, log_filename, ida_path

)

●Perfoms diassemblying using IDA
●Runs as a background process
●Runs DarunGrim IDA plugin automatically
●Runs the DiffEngine automatically on the files

Database
Python Interface

import DarunGrimDatabaseWrapper

database = DarunGrimDatabaseWrapper.Database(filename)
for function_match_info in database.GetFunctionMatchInfo():

if function_match_info.non_match_count_for_the_source > 0 or
function_match_info.non_match_count_for_the_target > 0:

print function_match_info.source_function_name +
hex(function_match_info.source_address) + '\t',

print function_match_info.target_function_name +
hex(function_match_info.target_address) + '\t',

print str(function_match_info.block_type) + '\t',
print str(function_match_info.type) + '\t',
print str(function_match_info.match_rate) + "%" + '\t',

print database.GetFunctionDisasmLinesMap(function_match_info.source_file_id,
function_match_info.source_address)

print database.GetMatchMapForFunction(function_match_info.source_file_id,
function_match_info.source_address)

Bin Collector
● Binary collection & consolidation system

● Toolkit for constructing binary library

● It is managed through Web Console

● It exposes some python interface, so it's scriptable if you
want

● The whole code is written in Python

● It maintains indexes and version information on the
binary files from the vendors.

● Download and extract patches automatically

● Currently limited functionality

● Currently it supports Microsoft binaries

● Adobe, Oracle binaries will be supported soon

Bin Collector
Collecting Binaries Automagically

● It visits each vendors patch pages

● Use mechanize python package to scrap MS patch pages

● Use BeautifulSoup to parse the html pages

● It extracts and archives binary files

● Use sqlalchemy to index the files

● Use PE version information to determine store location

● <Company Name>\<File Name>\<Version Name>

● You can make your own archive of binaries in more
organized way

Web Console Work Flow
Select Vendor

We only support Microsoft right now.
We are going to support Oracle and Adobe soon.

Web Console Work Flow
Select Patch Name

Web Console Work Flow
Select OS

Web Console Work Flow
Select a File

GDR(General Distribution): a binary marked as GDR contains only
security related changes that have been made to the binary

QFE(Quick Fix Engineering)/LDR(Limited Distribution Release): a
binary marked as QFE/LDR contains both security related changes
that have been made to the binaryas well as any functionality
changes that have been made to it.

Web Console Work Flow
Initiate Diffing

The unpatched file is automagically guessed based on the file name and version string.

Web Console Work Flow
Check the results

Web Console Work Flow
Check the results

Reading Results

● Locate security patches as quickly as possible

● Sometimes the diff results are not clear because of a
lot of noises.

● The noise is caused by

● Feature updates

● Code cleanup

● Refactoring

● Compiler option change

● Compiler change

Identifying Security Patches

● Not all patches are security patches

● Sometimes it's like finding needles in the sand

● We need a way for locating patches with strong
security implication

Identifying Security Patches
Security Implication Score

● DarunGrim 3 provides script interface to the Diffing
Engine

● DarunGrim 3 provides basic set of pattern matching

● We calculate Security Implication Score using this
Python interface

● The pattern matching should be easy to extend as the
researcher get to know new patterns

● You can add new patterns if you want.

Examples

● Examples for each vulnerability classes.

● DarunGrim2 and DarunGrim3 examples are shown.

● Security Implication Scores are shown for some
examples.

Stack Based Buffer Overflow:
MS06-070

Stack Based Buffer Overflow:
MS06-070/_NetpManageIPCConnect@16

Stack Based Buffer Overflow:
Signatures

● Pattern matching for string length checking routines is
a good sign for stack or heap based overflow.

● There are variations of string length check routines.

● strlen, wcslen, _mbslen, _mbstrlen

http://msdn.microsoft.com/en-us/library/78zh94ax%28VS.71%29.aspx

Stack Based Buffer Overflow(Logic
Error): MS08-067

● Conficker worm exploited this vulnerability to
propagate through internal network.

● Easy target for binary diffing

● only 2 functions changed.

● One is a change in calling convention.

● The other is the function that has the vulnerability

Stack Based Buffer Overflow(Logic
Error): MS08-067

Stack Based Buffer Overflow(Logic
Error): MS08-067

Stack Based Buffer Overflow(Logic
Error): MS08-067

Stack Based Buffer Overflow(Logic
Error): MS08-067

Stack Based Buffer Overflow(Logic
Error): MS08-067

StringCchCopyW
http://msdn.microsoft.com/en-us/library/ms647527%28VS.85%29.aspx

http://msdn.microsoft.com/en-us/library/ms647527(VS.85).aspx

Stack Based Buffer Overflow:
Signatures

● Pattern matching for safe string manipulation functions
are good sign for buffer overflow patches.

● Strsafe Functions
– StringCbCat, StringCbCatEx, StringCbCatN, StringCbCatNEx, StringCbCopy, StringCbCopyEx,

StringCbCopyN, StringCbCopyNEx, StringCbGets, StringCbGetsEx, StringCbLength,
StringCbPrintf, StringCbPrintfEx, StringCbVPrintf, StringCbVPrintfEx, StringCchCat,
StringCchCatEx, StringCchCatN, StringCchCatNEx, StringCchCopy, StringCchCopyEx,
StringCchCopyN, StringCchCopyNEx, StringCchGets, StringCchGetsEx, StringCchLength,
StringCchPrintf, StringCchPrintfEx, StringCchVPrintf, StringCchVPrintfEx

● Other Safe String Manipulation Functions
– strcpy_s, wcscpy_s, _mbscpy_s

– strcat_s, wcscat_s, _mbscat_s

– strncat_s, _strncat_s_l, wcsncat_s, _wcsncat_s_l, _mbsncat_s, _mbsncat_s_l

– strncpy_s, _strncpy_s_l, wcsncpy_s, _wcsncpy_s_l, _mbsncpy_s, _mbsncpy_s_l

– sprintf_s, _sprintf_s_l, swprintf_s, _swprintf_s_l

http://msdn.microsoft.com/en-us/library/ff468908%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/td1esda9.aspx
http://msdn.microsoft.com/en-us/library/d45bbxx4.aspx
http://msdn.microsoft.com/en-us/library/w6w3kbaf.aspx
http://msdn.microsoft.com/en-us/library/5dae5d43.aspx
http://msdn.microsoft.com/en-us/library/ce3zzk1k.aspx

Stack Based Buffer Overflow:
Signatures

● Removal of unsafe string routines is a good signature.
– strcpy, wcscpy, _mbscpy

– strcat, wcscat, _mbscat

– sprintf, _sprintf_l, swprintf, _swprintf_l, __swprintf_l

– vsprintf, _vsprintf_l, vswprintf, _vswprintf_l, __vswprintf_l

– vsnprintf, _vsnprintf, _vsnprintf_l, _vsnwprintf, _vsnwprintf_l

http://msdn.microsoft.com/en-us/library/kk6xf663.aspx
http://msdn.microsoft.com/en-us/library/h1x0y282.aspx
http://msdn.microsoft.com/en-us/library/ybk95axf.aspx
http://msdn.microsoft.com/en-us/library/28d5ce15.aspx
http://msdn.microsoft.com/en-us/library/1kt27hek.aspx

Integer Overflow
MS10-030

Integer Overflow
MS10-030

Integer Comparison Routine

Integer Overflow
MS10-030

Integer Overflow
Signatures

● Additional string to integer conversion functions can
be used to check sanity of an integer derived from
string.

● ULongLongToULong Function

– In case of multiplication operation is done on 32bit integer values,
it can overflow. This function can help to see if the overflow
happened.

● atoi, _atoi_l, _wtoi, _wtoi_l or StrToInt Function functions
might appear on both sides of functions.

http://msdn.microsoft.com/en-us/library/bb762429%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/yd5xkb5c.aspx
http://msdn.microsoft.com/en-us/library/bb773446%28VS.85%29.aspx

Integer Overflow
JRE Font Manager Buffer Overflow(Sun

Alert 254571)

Original Patched

.text:6D2C4A75 mov edi, [esp+10h]

.text:6D2C4A79 lea eax, [edi+0Ah]

.text:6D2C4A7C cmp eax, 2000000h

.text:6D2C4A81 jnb short loc_6D2C4A8D

.text:6D2C4A83 push eax ; size_t

.text:6D2C4A84 call ds:malloc

.text:6D244B06 push edi

Additiional Check:
.text:6D244B07 mov edi, [esp+10h]
.text:6D244B0B mov eax, 2000000h
.text:6D244B10 cmp edi, eax
.text:6D244B12 jnb short loc_6D244B2B

.text:6D244B14 lea ecx, [edi+0Ah]

.text:6D244B17 cmp ecx, eax

.text:6D244B19 jnb short loc_6D244B25

.text:6D244B1B push ecx ; size_t

.text:6D244B1C call ds:malloc

Integer Overflow
JRE Font Manager Buffer Overflow(Sun

Alert 254571)

Integer Overflow
Signatures

● Additional cmp x86 operation is a good sign of integer
overflow check.

● It will perform additional range check for the integer before
and after of the arithmetic operation

● Counting additional number of "cmp" instruction in
patched function might help deciding integer overflow.

Insufficient Validation of Parameters
Java Deployment Toolkit

Insufficient Validation of Parameters
Java Deployment Toolkit

● Unpatched one has whole a lot of red and yellow
blocks.

● The whole function's basic blocks have been removed.

● This is the quick fix for @taviso's 0-day.

● The function is responsible for querying registry key
for JNLPFile Shell Open key and launching it using
CreateProcessA API.

Insufficient Validation of Parameters
Signatures

● If validation of parameters are related to process
creation routine, we can check if the original or
patched function has a process creation related APIs
like CreateProcess Function in modified functions.

http://msdn.microsoft.com/en-us/library/ms682425%28VS.85%29.aspx

Invalid Argument
MS09-020:WebDav case

Orginal

Patched

Invalid Argument
MS09-020:WebDav case

Flags has changed

Original

Patched

Invalid Argument
MS09-020:WebDav case
What does flag 8 mean?

MSDN(http://msdn.microsoft.com/en-us/library/dd319072(VS.85).aspx) declares like
following:

MB_ERR_INVALID_CHARS
Windows Vista and later: The function does not drop illegal code points if

the application does not set this flag.
Windows 2000 Service Pack 4, Windows XP: Fail if an invalid input character is
encountered. If this flag is not set, the function silently drops illegal code
points. A call to GetLastError returns
ERROR_NO_UNICODE_TRANSLATION.

Invalid Argument
MS09-020:WebDav case
Broken UTF8 Heuristics?

6F0695EA mov esi, 0FDE9h
,,,,
6F069641 call ?FIsUTF8Url@@YIHPBD@Z ;
FIsUTF8Url(char const *)
6F069646 test eax, eax
if(!eax)
{

6F0695C3 xor edi, edi
6F06964A mov [ebp-124h], edi

}else
{

6F069650 cmp [ebp-124h], esi
}
...
6F0696C9 mov eax, [ebp-124h]
6F0696D5 sub eax, esi
6F0696DE neg eax
6F0696E0 sbb eax, eax
6F0696E2 and eax, 8

Insufficient Validation of Parameters
Signatures

● This issue is related to string conversion routine like
MultiByteToWideChar Function, we can check if the
modified or inserted, removed blocks have these kinds
of APIs used in it.

● If the pattern is found, it's a strong sign of invalid
parameter checks.

http://msdn.microsoft.com/en-us/library/dd319072%28VS.85%29.aspx

Use-After-Free: CVE-2010-0249-Vulnerability in Internet
Explorer Could Allow Remote Code Execution

Use-After-Free: CVE-2010-0249-Vulnerability in Internet
Explorer Could Allow Remote Code Execution

Use-After-Free: CVE-2010-0249-Vulnerability in Internet
Explorer Could Allow Remote Code Execution

Unpatched

Use-After-Free: CVE-2010-0249-Vulnerability in Internet
Explorer Could Allow Remote Code Execution

Patched

Use-After-Free: CVE-2010-0249-Vulnerability in Internet
Explorer Could Allow Remote Code Execution

Use-After-Free: CVE-2010-0249-Vulnerability in Internet
Explorer Could Allow Remote Code Execution

CTreeNode *arg_0

CTreeNode *arg_4

CTreeNode *orig_obj

2. Remove ptr

3. Add ptr

NodeAddRef

1. Add reference counter

NodeRelease

4. Release reference counter

Use-After-Free: CVE-2010-0249-Vulnerability in Internet
Explorer Could Allow Remote Code Execution

Signatures

● Original binary was missing to replace pointer for the
tree node.

● Freed node was used accidentally.

● ReplacePtr in adequate places fixed the problem

● We might use ReplacePtr pattern for use-after-free bug
in IE.

● Adding the pattern will help to find same issue later binary
diffing.

Conclusion
● Binary Diffing can benefit IPS rule writers and security

researchers

● Locating security vulnerabilities from binary can
help further binary auditing

● There are typical patterns in patches according to
their bug classes.

● Security Implication Score by DarunGrim3 helps
finding security patches out from feature updates

● The Security Implication Score logic is written in
Python and customizable on-demand.

Questions?

	Slide 1
	Slide 2
	How?
	Slide 4
	patch number
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Performing Diffing
	Slide 19
	Slide 20
	Slide 21
	Bin Collector
	Slide 23
	Select Vendor
	Select Patch Name
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Reading Results
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

