WAVE File Format file:///D:/Programming%20Proj ects/'WaveReader/wave.htm

10of9

WAVE File Format is afile format for storing digital audio (waveform) data. It supports a variety of bit resolutions, sample rates, and channels of audio.
Thisformat is very popular upon IBM PC (clone) platforms, and is widely used in professional programs that process digital audio waveforms. It takes
into account some peculiarities of the Intel CPU such aslittle endian byte order.

Thisformat uses Microsoft's version of the Electronic Arts Interchange File Format method for storing datain "chunks'. Y ou should read the article
About Interchange File Format before proceeding.

Data Types

A C-like language will be used to describe the data structuresin thefile. A few extra data types that are not part of standard C, but which will be used in
this document, are:

pstring Pascal-style string, a one-byte count followed by that many text bytes. The total number of bytesin this data type should be even. A pad
byte can be added to the end of the text to accomplish this. This pad byteis not reflected in the count.

ID A chunk ID (ie, 4 ASCII bytes) as described in About Interchange File Format.

Also note that when you see an array with no size specification (e.g., char ckDatd[];), thisindicates a variable-sized array in our C-like language. This
differs from standard C arrays.

Constants

Decimal values are referred to as a string of digits, for example 123, 0, 100 are all decimal numbers. Hexadecimal values are preceded by aOx - e.g.,
0x0A, 0x1, 0x64.

Data Organization

All datais stored in 8-bit bytes, arranged in Intel 80x86 (ig, little endian) format. The bytes of multiple-byte values are stored with the low-order (ie, least
significant) bytesfirst. Data bits are as follows (ie, shown with bit numbers on top, "Ish" stands for "least significant byte" and "msb" stands for "most
significant byte"):

7 6 5 4 3 2 1 0

o e e e aa oo +
char: | Isb |
Fommmmeeeeeeeeeaaeaaaaas +
7 6 5 4 3 2 1 01514 1312 1110 9 8
L T T T T T +
short: | Isb byte 0 | byte 1 nsb |
Fommmme e emeeeeaeeaaaaas s +
7 6 5 4 3 2 1 01514 1312 11 10 9 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
e mmeeeeeeeeeeeaaaaas s o e eeeaeaaaaas e mmeeeeeeeeeaeeaaaaas +
long: | Isb byte 0 | byte 1 | byte 2 | byte 3 nsb |
o e e e aa oo e e e e eaa o o e eee oo o e e e eaa oo +

File Structure

A WAVE fileis acoallection of anumber of different types of chunks. Thereisarequired Format (“fmt ") chunk which containsimportant parameters
describing the waveform, such as its sample rate. The Data chunk, which contains the actual waveform data, is also required. All other chunks are
optional. Among the other optional chunks are ones which define cue points, list instrument parameters, store application-specific information, etc. All of
these chunks are described in detail in the following sections of this document.

All applications that use WAV E must be able to read the 2 required chunks and can choose to selectively ignore the optional chunks. A program that
copies aWAVE should copy al of the chunksin the WAVE, even those it chooses not to interpret.

There are no restrictions upon the order of the chunks within a WAV E file, with the exception that the Format chunk must precede the Data chunk. Some
inflexibly written programs expect the Format chunk as thefirst chunk (after the RIFF header) although they shouldn't because the specification doesn't
requirethis.

Hereisagraphical overview of an example, minimal WAVE file. It consists of asingle WAVE containing the 2 required chunks, a Format and a Data
Chunk.

RI FF WAVE Chunk
grouplD = "'RFF
riffType = ' WAVE'

|

|

|

|

| | Format Chunk |
| | ckiD="fm ' |
[|
|

|

|

|

|

| Sound Data Chunk |
| cklD = "data' |

3/25/2006 9:01 PM

WAVE File Format file:///D:/Programming%20Proj ects/'WaveReader/wave.htm

20f9

A Bastardized Standard

The WAVE format is sort of a bastardized standard that was concocted by too many "cooks" who didn't properly coordinate the addition of "ingredients"
to the"soup". Unlike with the AIFF standard which was mostly designed by a small, coordinated group, the WAVE format has had al manner of
much-too-independent, uncoordinated aberrations inflicted upon it. The net result is that there are far too many chunks that may be found in aWAVE file
-- many of them duplicating the same information found in other chunks (but in an unnecessarily different way) simply because there have been too many
programmers who took too many liberties with unilaterally adding their own additions to the WAV E format without properly coming to a concensus of
what everyone else needed (and therefore it encouraged an "every man for himself" attitude toward adding things to this "standard"). One exampleisthe
Instrument chunk versus the Sampler chunk. Another exampleisthe Note versus Label chunksin an Associated Data List. | don't even want to get into
the totally irresponsible proliferation of compressed formats. (ie, It seems like everyone and his pet Dachshound has come up with some compressed
version of storing wave data -- like we need 100 different ways to do that). Furthermore, there are lots of inconsistencies, for example how 8-bit datais
unsigned, but 16-bit datais signed.

I've attempted to document only those aspects that you're very likely to encounter in a WAVE file. | suggest that you concentrate upon these and refuse to
support the work of programmers who fed the need to deviate from a standard with inconsistent, proprietary, self-serving, unnecessary extensions. Please
do your part to rein in half-assed programming.

Sample Points and Sample Frames

A large part of interpreting WAV E files revolves around the two concepts of sample points and sample frames.

A sample point is a value representing a sample of a sound at a given moment in time. For waveforms with greater than 8-bit resolution, each sample point
is stored as alinear, 2's-complement value which may be from 9 to 32 bits wide (as determined by the wBitsPerSample field in the Format Chunk,
assuming PCM format -- an uncompressed format). For example, each sample point of a 16-bit waveform would be a 16-bit word (ie, two 8-bit bytes)
where 32767 (Ox7FFF) is the highest value and -32768 (0x8000) is the lowest value. For 8-bit (or less) waveforms, each sample point is alinear, unsigned
byte where 255 is the highest value and 0 is the lowest value. Obviously, this signed/unsigned sample point discrepancy between 8-bit and larger

resol ution waveforms was one of those "oops" scenarios where some Microsoft employee decided to change the sign sometime after 8-bit wave files were
common but 16-bit wave files hadn't yet appeared.

Because most CPU's read and write operations deal with 8-bit bytes, it was decided that a sample point should be rounded up to a size which isamultiple
of 8 when stored in aWAVE. This makes the WAVE easier to read into memory. If your ADC produces a sample point from 1 to 8 bits wide, a sample
point should be stored in aWAVE as an 8-bit byte (ie, unsigned char). If your ADC produces a sample point from 9 to 16 bits wide, a sample point should
be stored in aWAVE as a 16-bit word (ie, signed short). If your ADC produces a sample point from 17 to 24 bits wide, a sample point should be stored in
aWAVE as three bytes. If your ADC produces a sample point from 25 to 32 bits wide, a sample point should be stored in a WAVE as a 32-bit
doubleword (ie, signed long). Etc.

Furthermore, the data bits should be |eft-justified, with any remaining (ie, pad) bits zeroed. For example, consider the case of a 12-bit sample point. It has
12 hits, so the sample point must be saved as a 16-bit word. Those 12 bits should be | eft-justified so that they become bits 4 to 15 inclusive, and bits0 to 3
should be set to zero. Shown below is how a 12-bit sample point with a value of binary 101000010111 is formatted | eft-justified as a 16-bit word.

[crr ot
l]1 o 1 0 O 0 O 1 0 1 1 1 0 0 0 O]
|

12 bit sanple point is left justified ri ght nost
4 bits are

zero padded

But note that, because the WAV E format uses Intel little endian byte order, the LSB is stored first in the wavefile as so:

| | | | | [1 | |1 | | | | | | | |
Jo 1 1 1 0 0 ©O0 O] |1 0 1 0 0 0 0 1]
| |

Lemmmmemeeeees > Kemmmmmememaa > Cemmemeeeeeecececececece e e >
bits 0 to 3 4 pad bits bits 4 to 11

For multichannel sounds (for example, a stereo waveform), single sample points from each channel are interleaved. For example, assume a stereo (ie, 2
channel) waveform. Instead of storing all of the sample points for the left channel first, and then storing all of the sample points for the right channel next,
you "mix" the two channels' sample points together. Y ou would store the first sample point of the left channel. Next, you would store the first sample
point of the right channel. Next, you would store the second sample point of the left channel. Next, you would store the second sample point of the right
channel, and so on, aternating between storing the next sample point of each channel. Thisiswhat is meant by interleaved data; you store the next sample
point of each of the channelsin turn, so that the sample points that are meant to be "played” (ie, sent to a DAC) simultaneously are stored contiguously.

The sample points that are meant to be "played" (ie, sent to aDAC) simultaneously are collectively called asample frame. In the example of our stereo
waveform, every two sample points makes up another sample frame. Thisisillustrated below for that stereo example.

sanpl e sanpl e sanpl e
frane O frame 1 frame N
| chl | ch2 | chl | ch2 | | chl | ch2|

|777| = one sanpl e point
|

For a monophonic waveform, a sample frame is merely a single sample point (ie, there's nothing to interleave). For multichannel waveforms, you should
follow the conventions shown below for which order to store channels within the sample frame. (ie, Below, a single sample frame is displayed for each

3/25/2006 9:01 PM

WAVE File Format file:///D:/Programming%20Proj ects/'WaveReader/wave.htm

example of amultichannel waveform).

channel s 1 2
| Teft | right |
stereo | | |
| | |
1 2 3
| Teft | right | center |
3 channel | | | |
| | | |
1 2 3 4
| front | front | rear | rear |
quad | left | right | left | right |
| | | | |
1 2 3 4
| left | center | right | surround|
4 channel |
| | | | |
1 2 3 4 5 6
| Teft | Teft | center | right | right | surround |
6 channel | center | | | center | | |

The sample points within a sample frame are packed together; there are no unused bytes between them. Likewise, the sample frames are packed together
with no pad bytes.

Note that the above discussion outlines the format of data within an uncompressed data chunk. There are some techniques of storing compressed datain a
data chunk. Obvioudly, that data would need to be uncompressed, and then it will adhere to the above layout.

Format chunk

The Format (fmt) chunk describes fundamental parameters of the waveform data such as sample rate, bit resolution, and how many channels of digital
audio are stored in the WAVE.

#define FormatID ' fnt ' /* chunkl D for Format Chunk. NOTE: There is a space at the end of this ID */

typedef struct {
I D chunkl D
| ong chunksSi ze;

short wrFor mat Tag;

unsi gned short wChannel s;

unsi gned | ong dwSanpl esPer Sec;
unsi gned | ong dwAvgByt esPer Sec;
unsi gned short wBl ockAlign;

unsi gned short wBitsPer Sanpl e;

/* Note: there may be additional fields here, depending upon wrornat Tag. */

} For mat Chunk;

ThelD isaways"fmt ". The chunkSize field is the number of bytes in the chunk. This does not include the 8 bytes used by ID and Sizefields. For the
Format Chunk, chunkSize may vary according to what "format" of WAVE fileis specified (ie, depends upon the value of wFormatTag).

WAVE data may be stored without compression, in which case the sample points are stored as described in Sample Points and Sample Frames
Alternately, different forms of compression may be used when storing the sound data in the Data chunk. With compression, each sample point may take a
differing number of bytes to store. The wFormatTag indicates whether compression is used when storing the data.

If compression isused (ie, WFormatTag is some value other than 1), then there will be additional fields appended to the Format chunk which give needed
information for a program wishing to retrieve and decompress that stored data. The first such additional field will be an unsigned short that indicates how
many more bytes have been appended (after this unsigned short). Furthermore, compressed formats must have a Fact chunk which contains an unsigned
long indicating the size (in sample points) of the waveform after it has been decompressed. There are (too) many compressed formats. Details about them
can be gotten from Microsoft's web site.

If no compressionis used (ie, wFormatTag = 1), then there are no further fields.

The wChannel s field contains the number of audio channels for the sound. A value of 1 means monophonic sound, 2 means stereo, 4 means four channel
sound, etc. Any number of audio channels may be represented. For multichannel sounds, single sample points from each channel areinterleaved. A set of
interleaved sample pointsis called a sample frame.

30f9 3/25/2006 9:01 PM

WAVE File Format file:///D:/Programming%20Proj ects/'WaveReader/wave.htm

40f 9

The actual waveform datais stored in another chunk, the Data Chunk, which will be described |ater.

The dwSamplesPerSec field is the sample rate at which the sound is to be played back in sample frames per second (ie, Hertz). The 3 standard MPC rates
are 11025, 22050, and 44100 KHz, although other rates may be used.

The dwAvgBytesPerSec field indicates how many bytes play every second. dwAvgBytesPerSec may be used by an application to estimate what size RAM
buffer is needed to properly playback the WAV E without latency problems. Its value should be equal to the following formularounded up to the next
whole number:

dwSamplesPerSec * wBlockAlign

ThewBlockAlign field should be equal to the following formula, rounded to the next whole number:

wChannels* (wBitsPerSample/ 8)

Essentially, wBlockAlign is the size of a sample frame, in terms of bytes. (eg, A sample frame for a 16-bit mono wave is 2 bytes. A sample framefor a
16-hit stereo wave is 4 bytes. Etc).

The wBitsPerSample field indicates the bit resolution of a sample point (ie, a 16-bit waveform would have wBitsPerSample = 16).

One, and only one, Format Chunk is reguired in every WAVE.

Data chunk
The Data (data) chunk contains the actual sample frames (ie, all channels of waveform data).
#define Datal D 'data’ /* chunk ID for data Chunk */

typedef struct {
I D chunkl B;
| ong chunkSi ze;

unsi gned char wavefornData[];
} Dat aChunk;

TheID isawaysdata. chunkSize is the number of bytesin the chunk, not counting the 8 bytes used by 1D and Size fields nor any possible pad byte
needed to make the chunk an even size (ie, chunkSize is the number of remaining bytes in the chunk after the chunkSize field, not counting any trailing
pad byte).

Remember that the bit resolution, and other information is gotten from the Format chunk.

The following discussion assumes uncompressed data.

ThewaveformData array contains the actual waveform data. The datais arranged into what are called sample frames. For more information on the
arrangment of data, see " Sample Points and Sample Frames'.

Y ou can determine how many bytes of actual waveform data there is from the Data chunk's chunkSize field. The number of sample framesin
waveformDatais determined by dividing this chunkSize by the Format chunk's wBlockAlign.

The Data Chunk is required. One, and only one, Data Chunk may appear in aWAVE.

Another way of storing waveform data

So, you'rethinking "This WAVE format isn't that bad. It seems to make sense and there aren't all that many inconsistencies, duplications, and
inefficiencies’. You fool! Werejust getting started with our first excursion into unnecessary inconsistencies, duplications, and inefficiency.

Sure, countless brain-damaged programmers have inflicted literally dozens of compressed data formats upon the Data chunk, but apparently someone felt
that even this wasn't enough to make your life difficult in trying to support WAVE files. No, some half-wit decided that it would be a good idea to screw

ID for thisList is'wavl'.

| strongly suggest that you refuse to support any WAVE file that exhibits this Wave List nonsense. There's no need for it, and hopefully, the misguided
programmer who conjured it up will be embarrassed into hanging his head in shame when nobody agrees to support his foolishness. Just say
"NOOOOOOO0000000!H! !

Cue chunk

The Cue chunk contains one or more "cue points' or "markers". Each cue point references a specific offset within the waveformData array, and has its

3/25/2006 9:01 PM

WAVE File Format file:///D:/Programming%20Proj ects/'WaveReader/wave.htm

50f9

own CuePoint structure within this chunk.

In conjunction with the Playlist chunk, the Cue chunk can be used to store looping information.

CuePoaint Structure

typedef struct {

| ong dw dentifier;

| ong dwPosi ti on;

I D f ccChunk;

| ong dwChunkSt art;

| ong dwBl ockStart;

| ong dwSanpl eX f set ;
} CuePoi nt;

The dwldentifier field contains a unique number (ie, different than the ID number of any other CuePoint structure). Thisis used to associate a CuePoint
structure with other structures used in other chunks which will be described |ater.

The dwPosition field specifies the position of the cue point within the "play order" (as determined by the Playlist chunk. See that chunk for a discussion of
the play order).

The fccChunk field specifies the chunk 1D of the Data or Wave List chunk which actually contains the waveform data to which this CuePoint refers. If
thereis only one Data chunk in thefile, then thisfield is set to the ID 'data. On the other hand, if the file contains a Wave List (which can contain both
‘data’ and 'sInt' chunks), then fccChunk will specify ‘data’ or 'sint'’ depending upon in which type of chunk the referenced waveform data is found.

The dwChunkStart and dwBlockStart fields are set to 0 for an uncompressed WAV E file that contains one 'data’ chunk. These fields are used only for
WAVE filesthat contain a Wave List (with multiple 'data and 'sint' chunks), or for a compressed file containing a'data chunk. (Actually, in the latter
case, dwChunkStart is also set to 0, and only dwBlockStart is used). Again, | want to emphasize that you can avoid al of this unnecessary crap if you
avoid hassling with compressed files, or Wave Lists, and instead stick to the sensible basics.

The dwChunkStart field specifies the byte offset of the start of the 'data or 'sIint' chunk which actually contains the waveform data to which this CuePoint
refers. This offset isrelative to the start of thefirst chunk within the Wave List. (ie, It's the byte offset, within the Wave List, of where the 'data or 'sInt'
chunk of interest appears. The first chunk within the List would be at an offset of 0).

The dwBlockStart field specifies the byte offset of the start of the block containing the position. This offset is relative to the start of the waveform data
within the 'data or 'sint' chunk.

The dwSampleOffset field specifies the sample offset of the cue point relative to the start of the block. In an uncompressed file, this equates to simply
being the offset within the waveformData array. Unfortunately, the WAV E documentation is much too ambiguous, and doesn't define what it means by
the term "sample offset". This could mean a byte offset, or it could mean counting the sample points (for example, in a 16-bit wave, every 2 bytes would

be 1 sample point), or it could even mean sample frames (as the loop offsets in AIFF are specified). Who knows? The guy who conjured up the Cue chunk
certainly isn't saying. I'm assuming that it's a byte offset, like the above 2 fields.

Cue Chunk
#define CuelD 'cue ' [/* chunk ID for Cue Chunk */

typedef struct {

I D chunkl D;
| ong chunksSi ze;
| ong dwCuePoi nt s;
CuePoint points[];
} CueChunk;

TheID isawayscue . chunkSize is the number of bytesin the chunk, not counting the 8 bytes used by ID and Sizefields.

The dwCuePoints field is the number of CuePoint structures in the Cue Chunk. If dwCuePointsisnot 0, it is followed by that many CuePoint structures,
one after the other. Because all fieldsin a CuePoint structure are an even number of bytes, the length of any CuePoint will aways be even. Thus,
CuePoints are packed together with no unused bytes between them. The CuePoints need not be placed in any particular order.

The Cue chunk is optional. No more than one Cue chunk can appear in a WAVE.

Playlist chunk

ThePlaylist (plst) chunk specifies aplay order for a series of cue points. The Cue chunk contains all of the cue points, but the Playlist chunk determines
how those cue points are used when playing back the waveform (ie, which cue points represent looped sections, and in what order those loops are
"played"). The Playlist chunk contains one or more Segment structures, each of which identifies alooped section of the waveform (in conjunction with the
CuePoint structure with which it is associated).

Segment Structure

3/25/2006 9:01 PM

WAVE File Format file:///D:/Programming%20Proj ects/'WaveReader/wave.htm

60f 9

typedef struct {
| ong dw dentifier;
| ong dwLengt h;
| ong dwRepeat s;

} Segnent;

The dwldentifier field contains a unique number (ie, different than the ID number of any other Segment structure). Thisfield should correspond with the
dwlindentifier field of some CuePoint stored in the Cue chunk. In other words, this Segment structure contains the looping information associated with that
CuePoaint structure with the same ID number.

The dwLength field specifies the length of the section in samples (ie, the length of the looped section). Note that the start position of the loop would be the
dwSampleOffset of the referenced CuePoint structure in the Cue chunk. (Or, you may need to hassle with the dwChunkStart and dwBlockStart fields as
well if dealing with aWave List or compressed data).

The dwRepeats field specifies the number of timesto play the loop. | assume that avalue of 1 means to repesat this loop once only, but the WAVE
documentation is very incomplete and omits this important information. | have no idea how you would specify an infinitely repeating loop. Certainly, the
person who conjured up the Playlist chunk appears to have no idea whatsoever. Due to the ambiguities, inconsistencies, inefficiencies, and omissions of
the Cue and Playlist chunks, | very much recommend that you use the Sampler chunk (described later) to replace them.

Playlist chunk

#define PlaylistID "plst' /* chunk ID for Playlist Chunk */

typedef struct {

I D chunkl D;
| ong chunksSi ze;
| ong dwSegnent s;

Segnent Segnent s[];
} Playli st Chunk;

TheID isawaysplst. chunkSize is the number of bytesin the chunk, not counting the 8 bytes used by ID and Size fields.

The dwSegments field is the number of Segment structuresin the Playlist Chunk. If dwSegmentsis not 0, it isfollowed by that many Segment structures,
one after the other. Because all fields in a Segment structure are an even number of bytes, the length of any Segment will always be even. Thus, Segments
are packed together with no unused bytes between them. The Segments need not be placed in any particular order.

Associated Data List

The Associated Data List contains text "labels" or "names' that are associated with the CuePoint structures in the Cue chunk. In other words, thislist
contains the text labels for those CuePoints.

Again, we're talking about another imbedded |FF List within the WAVE file. NOOOOOOOOO000000!!!! What'sa List? A List issimply a"master
chunk" that contains several "sub-chunks'. Just like with any other chunk, the "master chunk" has an ID and chunkSize, but inside of this chunk are
sub-chunks, each with its own 1D and chunkSize. Of course, the chunkSize for the master chunk (ie, List) includes the size of all of these sub-chunks
(including their ID and chunkSize fields).

The"Type ID" for the Associated Data List is "adtl". Remember that an | FF list header has 3 fields:

typedef struct {

ID listlD [* "list' */
| ong chunksSi ze; /* includes the Type ID bel ow */
I D typel D; [* "adtl' */

} Li st Header;

There are several sub-chunks that may be found inside of the Associated Data List. The ones that areimportant to WAVE format have IDs of "labl",
"note”, or "ltxt". Ignore the rest. Here are those 3 sub-chunks and their fields:

The Associated Data List is optional. The WAVE documentation doesn't specify if more than one can be contained in aWAVE file.

Label Chunk
#define LabelID 'labl' /* chunk ID for Label Chunk */
typedef struct {

I D chunkl D;

| ong chunksSi ze;

| ong dw dentifier;

char dwText[];
} Label Chunk;

3/25/2006 9:01 PM

WAVE File Format file:///D:/Programming%20Proj ects/'WaveReader/wave.htm

70f9

TheID isawayslabl. chunkSize is the number of bytes in the chunk, not counting the 8 bytes used by ID and Sizefields nor any possible pad byte
needed to make the chunk an even size (ie, chunkSize is the number of remaining bytes in the chunk after the chunkSize field, not counting any trailing
pad byte).

The dwldentifier field contains a unique number (ie, different than the ID number of any other Label chunk). This field should correspond with the
dwlndentifier field of some CuePoint stored in the Cue chunk. In other words, this Label chunk contains the text label associated with that CuePoint

structure with the same ID number.

The dwText array contains the text label. It should be a null-terminated string. (The null byte isincluded in the chunkSize, therefore the length of the
string, including the null byte, is chunkSize - 4).

Note Chunk
#define Notel D ' note' /* chunk ID for Note Chunk */

typedef struct {
I D chunkl D;

| ong chunkSi ze;

| ong dw dentifier;
char dwText[];
} Not eChunk;

The Note chunk, whose ID is note, is otherwise exactly the same as the Label chunk (ie, same fields). See what | mean about pointless duplication? But,
in theory, a Note chunk contains a"comment" about a CuePoint, whereas the Label chunk is supposed to contain the actual CuePoint label. So, it's
possible that you'll find both a Note and Label for a specific CuePoint, each containing different text.

Labeled Text Chunk
#define Label TextID 'Itxt' /* chunk ID for Label ed Text Chunk */

typedef struct {
I D chunkl D
| ong chunksSi ze;

| ong dw dentifier;
| ong dwSanpl eLengt h;
| ong dwPur pose;
short wCount ry;
short wLanguage;
short wDi al ect;
short wCodePage;
char dwText[];

} Label Text Chunk;

The ID isawaysltxt. chunkSize is the number of bytes in the chunk, not counting the 8 bytes used by ID and Size fields nor any possible pad byte needed
to make the chunk an even size (ie, chunkSize is the number of remaining bytes in the chunk after the chunkSize field, not counting any trailing pad byte).

The dwldentifier field is the same as the Label chunk.

The dwSamplel ength field specifies the number of sample pointsin the segment of waveform data. In other words, a Labeled Text chunk contains a label
for asection of the waveform data, not just a specific point, for example the looped section of awaveform.

The dwPurpose field specifies the type or purpose of the text. For example, dwPurpose can contain an ID like "scrp” for script text or "capt" for
close-caption text. How is this related to waveform data? Well, it isn't really. It's just that Associated Data Lists are used in other file formats, so they
contain generic fields that sometimes don't have much relevance to waveform data.

ThewCountry, wLanguage, and wCodePage fields specify the country code, language/dialect, and code page for the text. An application typically queries
these values from the operating system.

Sampler Chunk

The Sampler (smpl) Chunk defines basic parameters that an instrument, such asaMIDI sampler, could use to play the waveform data. Most importantly,
it includes information about |ooping the waveform (ie, during playback, to "sustain" the waveform). Of course, as you've come to expect from the WAVE
file format, it duplicates some of the information that can be found in the Cue and Playlist chunks, but fortunately, in amore sensible, consistent,
better-documented way.

#define Sampler!ID "snmpl' /* chunk ID for Sanpler Chunk */

typedef struct {
I D chunkl D;

3/25/2006 9:01 PM

WAVE File Format file:///D:/Programming%20Proj ects/'WaveReader/wave.htm

8of 9

| ong chunkSi ze;

| ong dwhanuf act urer;

| ong dwPr oduct ;

| ong dwSanpl ePeri od;

| ong dwM DI Uni t yNot e;

| ong dwM DI Pi t chFracti on;
| ong dwWSMPTEFor mat ;

| ong dWSMPTEO f set ;

| ong cSanpl eLoops;

| ong cbSanpl er Dat a;

struct Sanpl eLoop Loops[];
} Sanpl er Chunk;

TheID isawayssmpl. chunkSize is the number of bytes in the chunk, not counting the 8 bytes used by 1D and Size fields nor any possible pad byte
needed to make the chunk an even size (ie, chunkSize is the number of remaining bytes in the chunk after the chunkSize field, not counting any trailing
pad byte).

The dwManufacturer field contains the MMA Manufacturer code for the intended sampler. Each manufacturer of MIDI products has his own ID assigned
to him by the MIDI Manufacturer's Association. See the MIDI Specification (under System Exclusive) for alisting of current Manufacturer IDs. The high
byte of dwManufacturer indicates the number of low order bytes (1 or 3) that are valid for the manufacturer code. For example, this value will be
0x01000013 for Digidesign (the MMA Manufacturer code is one byte, 0x13); whereas 0x03000041 identifies Microsoft (the MMA Manufacturer codeis
three bytes, 0x00 0x00 0x41). If the WAVE is not intended for a specific manufacturer, then this field should be set to 0.

The dwProduct field contains the Product code (ie, model 1D) of the intended sampler for the dwManufacturer. Contact the manufacturer of the sampler to
ascertain the sampler'smodel ID. If the WAVE is not intended for a specific manufacturer's product, then this field should be set to 0.

The dwSamplePeriod field specifies the period of one sample in nanoseconds (normally 1/nSamplesPerSec from the Format chunk. But note that this field
alows finer tuning than nSamplesPerSec). For example, 44.1 KHz would be specified as 22675 (0x00005893).

ThedwMIDIUnityNote field is the MIDI note number at which the instrument plays back the waveform data without pitch modification (ie, at the same
sample rate that was used when the waveform was created). This value ranges 0 through 127, inclusive. Middle C is 60.

The dwMIDIPitchFraction field specifies the fraction of a semitone up from the specified dwMIDIUnityNote. A value of 0x80000000 is 1/2 semitone (50
cents); a value of 0x00000000 represents no fine tuning between semitones.

The dwSMPTEFormat field specifies the SMPTE time format used in the dwSMPTEOffset field. Possible values are:

0 = no SMPTE of fset (dwSMPTECE fset should al so be 0)

24 = 24 frames per second

25 = 25 franmes per second

29 = 30 franmes per second with frame dropping ('30 drop')
30 = 30 franmes per second

The dwSMPTEOffset field specifies atime offset for the sampleif it isto be syncronized or calibrated according to a start time other than 0. The format
of thisvalueis Oxhhmmssff. hh is asigned Hours value [-23..23]. mm is an unsigned Minutes value [0..59]. ssis unsigned Seconds value [0..59]. ff isan
unsigned value[0..(- 1)].

The cSamplel oops field is the number (count) of Samplel oop structures that are appended to this chunk. These structures immediately follow the
cbSamplerDatafield. Thisfield will be O if there are no Samplel oop structures.

The chSamplerData field specifies the size (in bytes) of any optional fields that an application wishes to append to this chunk. An application which
needed to save additional information (ie, beyond the above fields) may append additional fields to the end of this chunk, after all of the SamplelLoop
structures. These additional fields are also reflected in the ChunkSize, and remember that the chunk should be padded out to an even number of bytes. The
cbSamplerDatafield will be 0 if no additional information is appended to the chunk.

What follows the above fields are any Samplel oop structures. Each Samplel oop structure defines oneloop (ie, the start and end points of the loop, and
how many timesit plays). What follows any Samplel oop structures are any additional, proprietary sampler information that an application chooses to
store.

SampleL oop Structure

typedef struct {
long dw dentifier;

[ong dwType;
long dwsStart;
[ong dwEnd;

| ong dwFraction;
| ong dwPl ayCount;
} Sanpl eLoop;

The dwldentifier field contains a unique number (ie, different than the ID number of any other Samplel oop structure). This field may correspond with the
dwldentifier field of some CuePoint stored in the Cue chunk. In other words, the CuePoint structure which has the same ID humber would be considered
to be describing the same loop as this Sampl el oop structure. Furthermore, this field corresponds to the dwindentifier field of any label stored in the
Associated Data List. In other words, the text string (within some chunk in the Associated Data List) which has the same ID number would be considered

3/25/2006 9:01 PM

WAVE File Format file:///D:/Programming%20Proj ects/'WaveReader/wave.htm

to bethisloop's "name" or "label".
The dwTypefieldistheloop type (ie, how the loop plays back) as so:

0 Loop forward (normal)

1 Alternating loop (forward/backward)

2 Loop backward

3 - 31 reserved for future standard types

32 - ? sampler specific types (manufacturer defined)

The dwStart field specifies the startpoint of the loop. In other words, it's the byte offset from the start of waveformData[], where an offset of 0 would be at
the start of the waveformData[] array (ie, theloop start is at the very first sample point).

The dwEnd field specifies the endpoint of the loop (ie, a byte offset).

The dwFraction field allows fine-tuning for loop fractional areas between samples. Vaues range from 0x00000000 to OxFFFFFFFF. A value of
0x80000000 represents 1/2 of a sample length.

The dwPlayCount field is the number of times to play the loop. A value of 0 specifies an infinite sustain loop (ie, the wave keeps looping until some
external force interrupts playback, such as the musician releasing the key that triggered that wave's playback).

The Sampler Chunk is optional. | don't know asif thereis any limit of one per WAVE file. | don't see why there should be such alimit, since after al, an
application may need to deal with several MIDI samplers.

I nstrument chunk

The Instrument Chunk contains some of the same type of information as the Sampler chunk. So what else is new?

#define InstrumentID 'inst' /* chunklD for Instrunents Chunk */

typedef struct {
I D chunkl! D
| ong chunksSi ze;

unsi gned char Unshi ftedNote;

char Fi neTune;

char Gai n;

unsi gned char LowNot e;

unsi gned char H ghNot e;

unsi gned char LowVel ocity;

unsi gned char H ghVel ocity;
} I'nstrument Chunk;

ThelID isawaysinst. chunkSize should always be 7 since there are no fields of variable length.
The UnshiftedNote field is the same as the Sampler chunk's dwMIDIUnityNote field.

The FineTune field determines how much the instrument should alter the pitch of the sound when it is played back. Units arein cents (1/100 of a
semitone) and range from -50 to +50. Negative numbers mean that the pitch of the sound should be lowered, while positive numbers mean that it should
be raised. While not the same measurement is used, this field serves the same purpose as the Sampler chunk's dwFraction field.

The Gain field is the amount by which to change the gain of the sound when it is played. Units are decibels. For example, 0db means no change, 6db
means doubl e the value of each sample point (ie, every additional 6db doubles the gain), while -6db means halve the value of each sample point.

The LowNote and HighNote fields specify the suggested MIDI note range on a keyboard for playback of the waveform data. The waveform data should
be played if the instrument is requested to play a note between the low and high note numbers, inclusive. The UnshiftedNote does not have to be within
this range.

The LowVdoacity and HighVelocity fields specify the suggested range of MIDI velocities for playback of the waveform data. The waveform data should
be played if the note-on velocity is between low and high velocity, inclusive. Therangeis 1 (lowest velocity) through 127 (highest velocity), inclusive.

The Instrument Chunk is optional. No more than 1 Instrument Chunk can appear in one WAVE.

90of 9 3/25/2006 9:01 PM

